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We develop an athermal version of the shear-transformation-zone �STZ� theory of amorphous plasticity in
materials where thermal activation of irreversible molecular rearrangements is negligible or nonexistent. In
many respects, this theory has broader applicability and yet is simpler than its thermal predecessors. For
example, it needs no special effort to assure consistency with the laws of thermodynamics, and the interpre-
tation of yielding as an exchange of dynamic stability between jammed and flowing states is clearer than
before. The athermal theory presented here incorporates an explicit distribution of STZ transition thresholds.
Although this theory contains no conventional thermal fluctuations, the concept of an effective temperature is
essential for understanding how the STZ density is related to the state of disorder of the system.
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I. INTRODUCTION

The shear-transformation-zone �STZ� theory of amor-
phous plasticity, to date, has been applied most successfully
to “thermal” glassy systems at temperatures high enough that
they exhibit linear viscosity and that nonlinear flow at larger
driving stresses is controlled by thermally activated pro-
cesses �1,2�. Our purpose here is to examine the opposite,
“athermal” situation, where the ambient temperature is neg-
ligible, and all rearrangements of the constituent elements
are driven entirely by applied forces. Systems of the kind to
be discussed here include noncrystalline solids well below
their glass temperatures, dense granular materials, and vari-
ous kinds of soft materials such as foams, colloids, and the
like.

An increasingly useful source of information about these
systems is numerical simulation which, while limited in
comparison with laboratory experiments on real materials,
has certain compensating advantages. For example, athermal
materials seem to be intrinsically unstable against nonuni-
form failure via shear banding or fracture. Such instabilities
are much more difficult to observe and control in the labo-
ratory than in large-scale computations. One of our main
goals in this project is to develop a predictive description of
athermal plasticity—an analog of the Navier-Stokes equation
for amorphous solids—that can be used in heterogeneous
situations. In the present paper and its sequel �3�, however,
we confine our attention to spatially homogeneous systems
and test our results by comparing with simulations rather
than experiments. Another advantage of numerical simula-
tion is that it allows us to observe internal states of the sys-
tem that are not easily accessible in laboratory experiments.
That capability is a central feature of the following paper.

From its inception, the STZ theory has been built on the
flow-defect theories of Turnbull, Cohen, Argon, Spaepen,
and others. �4–11� It describes plastic deformation in amor-
phous solids, or solidlike materials, but not in liquids. The
assumption is that irreversible molecular �or granular� rear-
rangements occur only at sparsely distributed sites—the
STZ’s—within an otherwise elastic material. The validity of
this assumption was demonstrated explicitly in �12�, but it

goes back to essentially all of the previously cited earlier
work. The STZ model is strictly valid only when the local
rearrangements occur infrequently and independently of each
other, and when they require either substantial thermal acti-
vation or, in the athermal situations of interest here, suffi-
ciently large external driving forces. If the activation energy
or work needed to drive a rearrangement is small of order
kBT, or if the sites at which rearrangements occur cover most
of the system, then the material is effectively a liquid and
STZ theory is not applicable.

We visualize an STZ as a localized group of molecules
that is more susceptible than its neighbors to a shearing
transformation in some direction. That is, these molecules
must collectively surmount only a relatively small energy
barrier in order to undergo an irreversible shear. Once this
happens, it seems reasonable to suppose that they will resist
further shear in the original direction, but may be especially
susceptible to a reverse shear. One might imagine that the
first transition has redistributed the local stresses in such a
way as to favor a reverse transition if the applied stress
changes sign. We see no strong requirement that the reverse
transition must bring the molecules back to exactly their
original positions; but it is this approximate picture that sug-
gests a two-state model of STZ’s.

A primary rationale for the two-state model is that it pro-
vides a simple mechanism by which the system retains ori-
entational memory of prior deformations. Along with the dy-
namic transition between jammed and flowing states,
orientational memory is one of the universal features of
amorphous plasticity that we believe must be captured by
any satisfactory theory. A related requirement for an accept-
able theory is that it must include a mechanism by which
orientational memory is lost during deformation. Here that
mechanism is the annihilation and creation of STZ’s at a rate
proportional to the rate of energy dissipation. Under athermal
conditions, annihilation and creation occur only in response
to STZ transitions; thus this mechanism may also be seen as
a rough description of the cascades of rearrangements fol-
lowing STZ-like events seen by Maloney and Lemaitre
�13,14�, and emphasized by Argon and Demkowicz in papers
to be discussed in a sequel to this one. �15–18�
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The defining feature of an athermal system is the con-
straint that, because thermal activation of transitions is neg-
ligible or nonexistent, molecular rearrangements occur only
in response to driving forces. No motion occurs in the ab-
sence of such forces, and no rearrangement moves in a di-
rection opposite to that in which the force is applied. In other
words, molecular configurations cannot move uphill in en-
ergy as they may when thermal fluctuations are present.
Stress-induced shear transformations are intrinsically irre-
versible events. Work is done on the system as the STZ’s are
driven over energy barriers, and energy is dissipated as the
system moves downhill toward new stable states. In contrast
to the picture proposed in earlier papers �12,25,26� which
assumed only one kind of STZ, the model to be developed
here allows STZ’s to occur with a range of different sizes
and transition thresholds. With this generalization, the STZ
model may undergo limited irreversible deformations when
the applied stresses are less than the nominal yield stress.
The onset of athermal flow at an apparent yield stress then
must be a dynamic phenomenon. As in the original STZ
theories, it occurs when there is an exchange of stability
between the jammed steady states, where nothing is moving,
and the flowing steady states, where motion-induced annihi-
lation and creation of STZ’s balances the rate at which zones
are inactivated by forward transitions. In this way, the STZ
picture describes the dynamics of plastic yielding by the
same mechanism that it uses to describe the memory effects
mentioned above.

Although ordinary thermal fluctuations are absent in the
athermal models discussed here, the concept of an effective
disorder temperature is essential. Some of the earliest work
in this field recognized that the density of flow defects could
be related to an intensive quantity such as the free volume v f
�the inverse of the derivative of an entropy with respect
to the volume�. Intensive quantities of this kind characterize
the state of the system as a whole and not just that of a sub-
set of its degrees of freedom. Thus Cohen and Turnbull
in 1959 �4� �see also Spaepen �5�� proposed that the density
of flow defects in an amorphous solid be proportional to
exp�−const/v f�, and not just to v f itself. In Ref. �2�, one of us
�J.S.L.� argued that the appropriate generalization of free
volume is an effective temperature Teff that characterizes the
state of configurational disorder in the system. Teff equili-
brates to the ambient temperature T at high T, but may fall
out of equilibrium at low T where disorder is generated by
the atomic-scale, configurational rearrangements that accom-
pany mechanical deformation. If Teff= �ESTZ/kB��, where
ESTZ is a characteristic STZ formation energy, then the STZ
density is proportional to the Boltzmann factor exp�−1/��.
This is a direct analog of the free-volume formula and, in
fact, reduces to it in the case of a system under constant
pressure with a positive “effective” thermal expansion coef-
ficient. Importantly, the time variation of the STZ density is
governed by the dynamics of �. �For more information about
effective-temperature theories, see Refs. �19–24�.�

The scheme of this paper is as follows. We review and
reformulate basic features of the STZ theory in Sec. II. Then,
in Sec. III, we derive the athermal equations of motion for
the STZ state variables, propose a specific form for the ather-
mal rate factor, and show a few illustrative examples of how

the theory behaves in various experimental situations and
with various choices of the constituent parameters.

II. STZ BASICS

The STZ theory is a phenomenological construction. Our
strategy has been to start with what amounts to a caricature
of an amorphous material, specifically, a model in which
applied stresses and two-state STZ’s remain aligned along
fixed axes. We deduce from this rudimentary model the in-
ternal state variables that are needed to describe its behavior,
and then derive equations of motion for those variables.
When applying the theory to more realistic situations in three
dimensions, at least in simple geometries such as those we
encounter here, we assume that we can retain the form of our
equations of motion but replace certain state variables by
tensors when required by symmetry. In short, we see how far
we can go with minimal models and, to the extent possible,
test these models by comparing our theoretical predictions
with experimental data as in Refs. �1,2�.

Accordingly, we start by considering a two-dimensional
system, and subject it only to pure shear deformation ori-
ented along a fixed pair of principal axes x and y. It is suf-
ficient for present purposes to assume that the population of
STZ’s consists simply of zones oriented along the two prin-
cipal axes of the deviatoric stress tensor, which we take to be
sxx=−syy =s and sxy =0. Choose the “�” zones to be oriented
�elongated� along the x axis, and the “�” zones along the y
axis. We assume that the STZ’s occur in many different va-
rieties, with the symbol � representing, for example, their
actual orientations with respect to the stress axes as in Ref.
�26� or, explicitly in what follows, their transition thresholds.
Thus we denote the population density of zones oriented in
the “�” directions by the symbol n±���.

With these conventions, the plastic strain rate—more gen-
erally, the plastic part of the rate-of-deformation tensor—is

Dxx
pl = − Dyy

pl � Dpl =
�

�0
� d��R��s̃�n−��� − R��− s̃�n+���� .

�2.1�

Here, � is a material-specific parameter with the dimen-
sions of volume �or area in strictly two-dimensional models�,
which must have roughly the same order of magnitude as
the volume of an STZ, that is, a few cubic or square atomic
spacings. �0 sets a time scale for these processes. The inte-
gration is over the relevant space of parameters �. The
integrand is the net rate per unit volume at which �-type
STZ’s transform from “�” to “�” orientations. R��s̃� /�0 and
R��−s̃� /�0 are the rates for forward �“�” to “�”� and back-
ward �“�” to “�”� transitions, respectively. For later conve-
nience, we have written these rates as functions of a dimen-
sionless stress s̃=s /sy, where sy will turn out to be the
dynamic yield stress in the athermal theory. At present, we
need to think of sy only as a characteristic scale for measur-
ing stresses.

The next step is to postulate a master equation for the
populations n±���. As before, we do this in a mean-field
approximation. Using earlier notation, we write
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�0ṅ±��� = R��± s̃�n���� − R��� s̃�n±���

+ 	�s̃��n
���
2

e−1/� − n±���� . �2.2�

The first pair of terms on the right-hand side describes the
same switching back and forth of the STZ’s that appears in
Eq. �2.1�. The last terms describe the creation and annihila-
tion of zones at a rate 	�s̃� /�0 that, in a mean-field sense, we
assume to be the same for both n+��� and n−���, independent
of � and of local properties of the system. 	 is a non-
negative, scalar quantity that vanishes when the rate of de-
formation is zero; in earlier papers �25,26� we have argued
that it must be proportional to the rate per STZ at which
mechanical work is dissipated via irreversible plastic defor-
mation. n
 exp�−1/�� is the steady-state density of STZ’s
achieved by the system during persistent deformation. As
discussed in the Introduction, � is the effective temperature
measured in units of the STZ formation energy. In writing
this part of Eq. �2.2�, we are using the principle of detailed
balance to fix the ratio of the annihilation and creation rates.
Note that Eq. �2.2� contains no aging or spontaneous relax-
ation, consistent with the assumption that thermal fluctua-
tions are absent.

Now suppose that n±���=n±p��� and n
���=n
p���,
where p��� is a normalized distribution over �. At this point,
we make the important simplifying assumption that p��� is
not itself a dynamical quantity that changes during deforma-
tion. Performing the integration in Eq. �2.1�, we find that

Dpl =
�

�0
�R�s̃�n− − R�− s̃�n+� , �2.3�

where

R�s̃� =� R��s̃�p���d� . �2.4�

Similarly, we integrate both sides of Eq. �2.2� over � to
obtain

�0ṅ± = R�± s̃�n� − R�� s̃�n± + 	�s̃��n


2
e−1/� − n±� .

�2.5�

Thus we recover exactly the earlier equations of motion for
the STZ populations, but with a modified interpretation of
the rate factors.

Before writing an equation of motion for �, and then
moving on to the specifics of the athermal theory, we rein-
troduce some convenient notation and rewrite the equations
of motion in the form in which we shall use them. We define
the following dimensionless quantities:

�0 � �n
, �2.6�

� �
n+ + n−

n


, �2.7�

m �
n+ − n−

n+ + n−
, �2.8�

C�s̃� �
1

2
�R�s̃� + R�− s̃�� , �2.9�

T�s̃� �
R�s̃� − R�− s̃�
R�s̃� + R�− s̃�

. �2.10�

Then Eq. �2.3� is

�0Dpl = �0�C�s̃��T�s̃� − m� �2.11�

and Eq. �2.5� becomes a pair of equations for m and �:

�0ṁ = 2C�s̃��T�s̃� − m� −
m	�s̃�

�
e−1/� �2.12�

and

�0�̇ = 	�s̃��e−1/� − �� . �2.13�

Using the preceding notation, we choose the equation of
motion for the effective temperature � to be the athermal
version of Eq. �3.5� in Ref. �2�. So far, none of the ingredi-
ents of our equations of motion have been written specifi-
cally in their athermal forms; but here we deviate by drop-
ping terms that refer explicitly to mechanisms by which �
relaxes to the ambient temperature. Thus

�0c0�̇ = �0�	�s̃���
 − �� . �2.14�

This is basically an expression of the first law of thermody-
namics. The left-hand side is the time rate of change of the
configurational internal energy roughly approximated as the
product of the effective temperature � multiplied by a spe-
cific heat c0. The latter quantity is expressed in units of kB
per atom and thus is of order unity. The right-hand side of
Eq. �2.14� is proportional to the rate of energy dissipation per
unit volume, that is, the dissipation rate per STZ 	 multiplied
by the STZ density �.

The last factor on the right-hand side of Eq. �2.14� ap-
pears because there must be an upper bound on �; the disor-
der temperature cannot simply increase indefinitely under
continued athermal deformation but, rather, must settle to
some steady-state value �
. That limiting behavior has been
demonstrated explicitly by Ono et al. in simulations of a
sheared foam �19�, in which the authors showed that a vari-
ety of different definitions of an effective temperature for an
athermal system are consistent with each other. They also
found that �
 has a nonzero value at sufficiently small strain
rates and increases, as argued in Ref. �2�, only when the
strain rate becomes comparable to other relevant, internal,
inverse time scales. In Ref. �2�, the small-strain-rate value of
�
 was estimated to be roughly the ratio of the yield stress to
the shear modulus or, more or less equivalently, the ratio of
the glass temperature to the STZ formation energy. If the
former estimate can be taken literally, then Johnson’s analy-
sis of yield strengths in a wide range of glasses in Ref. �27�
implies that �
 is a universal number of order 0.02–0.04.
That value is consistent with the one found in Ref. �2�, where
a direct estimate of the STZ energy in a metallic glass was
available from viscosity measurements.

The preceding estimates of �
 give us useful insight re-
garding the general structure of the STZ theory summarized
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by Eqs. �2.11�–�2.14�. In our atomic units, the density n


should be of order unity, and �0 as defined in Eq. �2.6� also
must be of order unity. Thus, if �
 is small of order 0.1 or
less, the density of STZ’s, �	exp�−1/�
�, is of order 10−3

or appreciably smaller, consistent with our basic assumption
that the STZ’s are rare defects that interact only weakly with
each other. In retrospect, we recognize that earlier STZ theo-
ries that did not include the effective temperature, e.g., Ref.
�1�, required improbably large values of the STZ density in
order to agree with experiment.

� appears as a rate-determining prefactor on the right-
hand sides of Eqs. �2.11� and �2.14�, which govern the bulk
system-wide variables Dpl and �; but � does not appear in a
similar way in Eqs. �2.12� or �2.13�, which pertain to the
dynamics of individual STZ’s. It follows that the plastic
strain rate and the effective temperature respond much more
slowly to changes in stress than the do the internal STZ
variables m and �, and that the slow dynamics of the effec-
tive temperature controls the observable mechanical behav-
ior of the system in most circumstances.

III. ATHERMAL THEORY

The crux of the athermal STZ theory is the choice of the
rate factor R�s̃� and the resulting expression for the creation
and annihilation factor 	. An immediate and important sim-
plification follows from the athermal constraint that no mo-
tion occurs in a direction opposite to that of the applied
force. Thus R�s̃� must vanish if s̃0. We then find from Eq.
�2.10� that

T�s̃� = sgn�s̃� =
s̃


s̃

. �3.1�

This result is trivially correct no matter how complicated the
transition rate might be. It immediately tells us that
jamming—i.e., Dpl=0—occurs only for m= ±1, depending
on the sign of the stress, and that no transitions in either the
forward or backward direction are occurring in the jammed
state. For example, when s̃�0 in Eq. �2.3�, jamming occurs
because both n−=0 and R�−s̃�=0.

A second immediate simplification comes from the obser-
vation that, with no uphill transitions in energy, all the work
done on the system must be dissipated and none can be
stored internally. Thus the dissipation rate per STZ, in the
dimensionless form required by Eq. �2.5�, must be

	�s̃,m� =
2�0s̃Dpl

�0�
= 2s̃C�s̃�� s̃


s̃

− m� . �3.2�

We thus recover the expression for 	 originally guessed in
Ref. �12� but now without the sign problem pointed out
there. The work done by the external driving force cannot be
negative in the athermal limit because the plastic flow must
have the same sign as the stress. �Equation �3.2� can be de-
rived systematically using Pechenik’s method �25,26�. That
analysis reveals that, in the athermal limit, the recoverable
internal energy vanishes for m21.�

To complete the definition of our model, we must specify
a form for R�s̃�. Consider just a single species of STZ, and

suppose that the parameter � determines the activation
threshold, say, s̃�. That is, let R��s̃� vanish for s̃ s̃�, with the
understanding that the absence of thermal fluctuations means
that the only allowed transitions are those that are driven
mechanically by sufficiently large stresses. A convenient,
minimal form for R��s̃� is

R��s̃� = �2�s̃ − s̃�� for s̃ � s̃�,

0 for − 
  s̃  s̃�.
� �3.3�

This expression is a rough description of an athermal system
moving in a double-well potential. The system remains
trapped until the applied force s̃ reaches its threshold s̃�, at
which point the unbalanced force rises linearly in s̃− s̃�. If
the response is dissipative, i.e., frictional or viscous, then the
speed at which the system moves away from its original
position will also be proportional initially to s̃− s̃�. In our
case, the proportionality coefficient is incorporated into the
factor �0

−1.
For purely athermal systems such as granular materials or

foams where there are no other relevant time scales, this
interpretation of the rate factor makes sense only if �0 is
comparable to, or longer than the inverse of the total strain
rate. In the opposite limit, where the duration of an STZ
transition is very short compared to the interval between
transitions, the only relevant time is the inverse strain rate
itself. Therefore, the rate of STZ transitions �0

−1 must be pro-
portional to the total strain rate. This is the common limiting
situation in which the number of irreversible atomic rear-
rangements, i.e., STZ transitions, does not depend on the
length of time during which the material has been loaded but
only on the extent of the deformation. The situation is quite
different in molecular solids, even at athermally low tem-
peratures, because then the molecular vibration frequency
governs the rate of the forward, stress-enabled transitions
across the STZ energy barrier.

According to Eq. �2.4�, R�s̃� is the average over rate fac-
tors R��s̃� with a normalized weight factor that we can de-
note by p�s̃��. In choosing p�s̃��, we are led by the following
considerations.

�1� If characteristic stresses for a system of interest are of
order our scale factor sy, and if sy is the only stress scale in
the problem, then p�s̃�� should have a peak at s̃�	1.

�2� The probability of very low thresholds, s̃��1, must be
vanishingly small. The athermal constraint means that there
are no negative thresholds, i.e., no transitions in the direction
opposite to the stress. Therefore p�s̃�� must be such that R�s̃�
vanishes smoothly at s̃=0 and remains zero for all s̃0.

�3� We expect that different materials, under different cir-
cumstances, will have different threshold distributions, and
we therefore need at least one extra parameter that controls
the width and/or shape of p�s̃��. Our minimal, phenomeno-
logical rule for model building implies that we should start
by introducing only one such parameter, denoted below by �.

A distribution that satisfies all these criteria and is conve-
nient for numerical purposes, is
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p��s̃�� =
��+1

�!
s̃�

� exp�− �s̃�� . �3.4�

This distribution has a width of order �−1/2 near its peak at
s̃�=1. R�s̃� is now obtained from Eq. �2.4�:

R�s̃� = 2
��+1

�!
�

0

s̃

�s̃ − s̃��s̃�
� exp�− �s̃��ds̃� �3.5�

from which we see that

R�s̃�  � s̃�+2 for s̃ → + 0,

2�s̃ − 1� for s̃ � 1.
� �3.6�

Our equations of motion are now conveniently written in
the form

Dpl�s̃,m,�� =
�0

�0
�s̃,m� , �3.7�

where

q�s̃,m� � C�s̃�� s̃


s̃

− m� , �3.8�

ṁ =
2

�0
q�s̃,m��1 −

ms̃

�
e−1/�� , �3.9�

�̇ =
2

�0
s̃q�s̃,m��e−1/� − �� �3.10�

and

�̇ =
2�0

c0�0
�s̃q�s̃,m���
 − �� . �3.11�

Equations �3.10� and �3.11� tell us that the only stable,
steady-state solutions of the preceding equations must have
�=�
 and �=exp�−1/�
�, consistent with our expectation
that the system must flow to a fixed point with an STZ den-
sity n
 exp�−1/�
�. Then Eq. �3.9� has two stationary solu-
tions: the jammed state with m= ±1 �depending on the sign
of s̃� and Dpl=0 and the flowing state with m=1/ s̃ and Dpl

�0. These two solutions coincide at m= s̃= ±1. It is easy
to check, as in many earlier STZ papers, that the jammed
state is dynamically stable for 
s̃
1 and the flowing state
for 
s̃
�1. An exchange of stability occurs at s̃y =1, which
justifies our earlier choice of units for the stress. Note that
these conclusions are entirely independent of the rate factor,
whose stress dependence enters only via the function C�s̃� in
the equations of motion.

To look at the time-dependent behavior of these equa-
tions, we must include elastic as well as plastic responses.
Assume that the total rate of deformation Dtot is a linear
superposition of elastic and plastic parts, that is,

Dtot =
s̃

2�̃
+ Dpl�s̃,m,�� , �3.12�

where �̃ is the shear modulus measured in units sy. In one
common class of experiments, the material is sheared at a

fixed rate Dtot= �̇ /2, and the stress is measured as a function
of the strain �. To model such experiments, we write Eq.
�3.12� in the form

ds̃

d�
= �̃�1 −

2�0�

�̇�0

q�s̃,m�� �3.13�

and similarly transform Eqs. �3.9�, �3.10�, and �3.11�:

dm

d�
=

2

�̇�0

q�s̃,m��1 −
ms̃

�
e−1/�� , �3.14�

d�

d�
=

2

�̇�0

s̃q�s̃,m��e−1/� − �� , �3.15�

and

d�

d�
=

2�0

c0�̇�0

�s̃q�s̃,m���
 − �� . �3.16�

To illustrate the predictions of this theory, we show in
Fig. 1 a sequence of stress-strain curves s̃��� for different
values of �̇�0. A corresponding set of graphs of ���� is
shown in the lower panel of that figure. For each of these

FIG. 1. �Color online� Upper panel: The normalized stress s /sy

as a function of strain � for different values of the normalized strain
rate 2Dtot�0= �̇�0. The parameters used in integrating Eqs.
�3.13�–�3.16� are �=1, �
=1, �0=0.5, �̃=45, �0=1, and c0=0.25.
The different values of the normalized strain rate �from top to
bottom� are 2Dtot�0= �̇�0=0.3,0.1,0.015. The initial values used
are m��=0�=0 �i.e., no previous deformation� and ���=0�
=exp�−1/�0�. Lower panel: The corresponding curves of � as a
function of � for the three cases. See text for discussion.

ATHERMAL SHEAR-… . I. BASIC PRINCIPLES PHYSICAL REVIEW E 75, 036107 �2007�

036107-5



curves we have used �=1 �implying a broad distribution of
low-lying thresholds�, �
=1 �a large value, chosen here for
illustrative purposes�, and an initial value of �=�0=0.5. We
also choose �̃=45, �0=1, and c0=0.25. Note that, for small
�̇�0=0.015 �lower curve, upper panel�, the flow stress s̃ f at
large � is approximately equal to the yield stress, s̃ f 	1, and
that there is substantial yielding at smaller stresses because �
is small. For larger values of �̇�0, the stress rises nearly elas-
tically to a peak as � and the number of STZ’s increases, and
then drops as the plastic flow induces strain softening. The
flow stresses are higher in these situations. In all cases, the
effective temperature � ultimately reaches its steady-state
value �
.

A second common class of experiments is that in which
the stress rather than the strain is controlled. In this situation,
we must solve Eq. �3.12� as written, with Dtot= �̇ /2 on the
left-hand side and s̃ a predetermined function of time t on the
right. Figure 2 illustrates a stress-strain curve for a case in
which the stress is cycled as shown in the inset. We have
chosen the stress to remain always less than the yield stress
in order to illustrate the effects of small �=1. The material
parameters are the same as in Fig. 1. Note the appearance of
subyield deformation as before, and also the hysteresis asso-
ciated with energy dissipation during that deformation.

IV. CONCLUDING REMARKS

The athermal STZ theory appears to be cleaner and more
broadly applicable than its predecessors. It does not, of
course, replace the thermal STZ theory that is needed to
describe plastic deformation of amorphous materials near
their glass temperatures; but, even there, the athermal analy-
sis suggests some simplifications that may be useful, for ex-
ample, in the choice of the transition rates R�s̃�. It seems to
us that the most important open question in the athermal STZ
theory is whether the effective temperature � is adequate for
describing all the relevant internal states of a deforming ma-

terial, or whether other internal variables may be needed.
Our analysis of the simulations by Demkowicz and Argon
�15–18�, to be described in the sequel to this paper, is aimed
at answering this question.
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